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ColorNet: Convolutional Encoder-Decoders for Image Colorization

Project Motivation

We can often predict the color of objects given only their grayscale images. Consider Figure 1 and

Figure 2.

Figure 1

A grayscale idyllic mountain landscape

Figure 2

An idyllic mountain landscape

Even from the grayscale image, our experiential knowledge of the outdoors would enable us to

presume that the grass in the landscape is green, the clouds are white, the sky is blue, and the

snow-capped mountain peaks are white. The true colors could easily be different (in autumn, the tree

leaves might instead be red, orange, yellow, or brown), yet our past experience with the outdoors would

lead us to guess the tree leaves are green.

Machine learning models, on the other hand, have no such past experience. Instead, they rely on a

meaningful dataset to provide this “past experience”. In this project, we tackle the following problem:

Given a grayscale image, can a model hallucinate a plausible coloring of the image? Although



COLORNET 3

we train our models to reproduce the ground truth, the goal of hallucination allows for alternate plausible

colorings (for example, though the ground truth image may be red, apples in the real world can also be

green or yellow). We explore this problem using a variety of convolutional neural network architectures and

model learning techniques. Finally, we compare model predictions with ground truth colorings through

qualitative and quantitative methods.

Previous Works

Prior attempts in image colorization tasks fall into two categories: regression and classification.

Zhang et al. (2016) explores both methods. Their regression network minimizes the Mean Squared Error

(MSE) loss. Because MSE loss tended to produce “grayish, desaturated results” due to the

underconstrained nature of the problem, they quickly abandoned it in favor of a classification approach

(pp. 4-5). They found much more favorable results with quantizing the RGB color space into 313 classes

and performing multinomial classification, with class rebalancing to account for more rare colors. Zhang

et al. trained both models on 1.3 million ImageNet training images (p. 7).

Iizuka et al. (2016) uses a different approach, constructing a much more complicated model that

extracts low, mid, and high-level features of the image to both colorize the grayscale input and also provide

object classification (pp. 110:3-4). The colorization sub-network uses MSE loss as in Zhang et al.’s

regression approach (p. 110:5).

Isola et al. (2018) applies conditional generative adversarial networks (GANs) for more tasks than

just grayscale to color image generation. There are a number of aspects of Isola et al.’s work that are

especially relevant to our approach. First, their grayscale to color experiment also uses the ImageNet

dataset, just as in Iizuka et al. and Zhang et al. Second, they experimented using both a traditional

encoder-decoder and using a U-Net architecture (p. 6). Ronneberger et al. (2015) originally developed the

U-Net architecture for biomedical image segmentation. The skip connections in the model, akin to ResNet

(He et al., 2015), enables low-level features to “short-circuit” through the model and be preserved in deeper

layers. Our approach will build upon the prior work of all of these papers.

Dataset

We use the ImageNet-1K dataset downsampled to 64x64 resolution (Chrabaszcz et al., 2017)

(Russakovsky et al., 2015). This gives us access to 1 281 167 training samples and 50 000 validation

samples. A sample of the training images is given in Figure 3. Additionally, training on an ImageNet

dataset will allow us to compare our results to the aforementioned papers.
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Figure 3

A subset of images from the ImageNet-1K 64x64 training set

Preprocessing

As we are not performing object classification, we can discard the object class data. We use the

downsampled dataset to reduce model training time and standardize the model input shape (images in the

full ImageNet dataset do not adhere to a standard shape). Additionally, we convert the images from the

RGB color space to the CIELAB color space, as is done in Zhang et al. (2016). Using CIELAB provides

two improvements over using RGB: (a) the L channel (which encodes the luminance of the image) is

equivalent to the grayscale image, and (b) the a and b channels (which together encode the chrominance of

the image) reduce the number of channels we need to predict to 2 (as opposed to 3 channels in RGB

space). Thus, we only need to store the RGB color images on disk, as they can be converted to CIELAB

at train/evaluation time. We use D50 as our reference white point.
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System Design and Implementation

In approaching the problem, we explore two model architectures: a simple convolutional

autoencoder and a U-Net. Because we use the CIELAB space, both models will have an input shape of

(batch_size, num_channels=1, width=64, height=64) and an output shape of (batch_size,

num_channels=2, width=64, height=64). Both models are trained as regression tasks, using pixel-wise

Euclidean (L2) loss along the a and b channels as the loss function, given in Equation 1, where Ŷ is the

model prediction, Y is the ground truth, and h, w are the height and width of the images. Both models

additionally normalize input images in the L channel space and un-normalize output images in the ab

channel space.

L2

(
Ŷ, Y

)
= 1

2
∑
h,w

∥∥∥Yh,w − Ŷh,w

∥∥∥2

2
(1)

Approach 1: Autoencoder

Our first model uses an autoencoder approach, largely inspired by Zhang et al.’s model. Key

differences between our model and theirs include input shape (64x64 in ours compared to 256x256 in

theirs), latent space shape (8x8 in ours compared to 32x32 in theirs), and down/up-sampling ratios (we

only downsample and upsample by factors of 2, whereas they downsample by a factor of 2 and upsample

by a factor of 2 or 4). Each block in our model uses two or three “same” convolutional layers with

kernel_size=3, each followed by a ReLU layer. Each block is followed by a 2D batch normalization. The

output convolutional layer uses kernel_size=1 with Tanh activation. Downsampling is done in the spatial

dimension after the first, second, and third blocks instead of using Pooling layers.

The autoencoder model uses 493 billion multiply-add operations and 31,091,010 parameters.

Training was performed for 64 epochs on 1 million train images and 5,000 test images from ImageNet-1K

64x64 using Adam optimization on the MSE loss function with learning_rate=5e-5. Training was

conducted on the Princeton Adroit HPC cluster using a NVIDIA V100 GPU. The total training time was

37 hours, 3 minutes.

Approach 2: U-Net

We improved on our initial autoencoder model by adding skip connections, drawing inspriation

from Ronneberger et al. (2015). Adding skip connections enable lower-level features extracted shallower in

the model to “short-circuit” through the model, preserving their effect in deeper layers. The U-Net model

architecture is largely the same as the autoencoder model, with a few differences:

1. Downsampling is performed with stride=2 in the last convolutional layer in the second, third,

and fourth blocks, instead of downsampling the block output in the spatial dimension
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2. Three skip connections are added, short-circuiting the model between blocks 1 and 10, 2 and 9,

and 3 and 8. Skip connection layers are “same” convolutional layers with kernel_size=1. The output of

the skip layer is added to its corresponding (deeper) layer and activated with the ReLU function.

The U-Net model uses 664 billion multiply-add operations and 31,104,450 parameters. It also uses

the same epoch count, optimizer, and learning rate settings as the autoencoder model. Training was also

conducted on the Princeton Adroit HPC using a NVIDIA V100 GPU. The total training time was 40

hours, 46 minutes.

Results and Analysis

Quantitative Analysis

The MSE train and test loss plots for both models are shown in Figure 4. Both models appear to

overfit drastically, as the drop in train loss is accompanied by a slight increase of test loss as the number of

epochs increases. The training MSE loss of both models declines at a similar rate. The test MSE loss of

the U-Net model is consistently 25 points lower than that of the autoencoder model, though the instability

of the loss curves of both models indicates that this may not a significant conclusion.

(a) Autoencoder (b) U-Net

Figure 4

Epoch-end loss plots of both models. In both loss plots, the orange line is train loss and the blue line is test

loss. The y-axis is MSE loss. The x-axis is the zero-indexed epoch count.

Qualitative Analysis

A random sampling of test images and their recolorings as performed by the autoencoder model is

presented in Figure 5. This model creates plausible hallucinations for images where large areas of the

image have the same color. For example, the ocean scene (5th column, 1st and 2nd rows), the sailboat in

the harbor (1st column, 3rd and 4th rows), and beach scene (4th column, 3rd and 4th rows) have
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hallucinations that are visually very similar to the ground truths.

However, the autoencoder model fails to create visually plausible colorings for images with rapid

shifts in chrominance in local regions. For example, this is seen in the “splotches” of color that bleed

beyond object boundaries, such as in the buckets (5th column, 5th and 6th rows), the bus (5th column, 7th

and 8th rows), the four standing people (8th column, 1st and 2nd rows), and the bagels (8th column, 3rd

and 4th rows). These splotches of color are likely due to the architecture of the model itself. Encoding the

input image into a latent space likely destroys low-level features of the image, including semantic

separation of objects in the image. Resolving this issue is where we believe the skip connections in the

U-Net model will produce the greatest improvement.
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Figure 5

Random samples of test set images and their recolorings by the autoencoder model. Recolorings appear

below ground truth images.

A random sampling of test images and their recolorings as performed by the U-Net model is

presented in Figure 6. This model seems to produce much more plausible hallucinations as compared to

the autoencoder. None of these random samples show color bleeding past object boundaries, indicating

that adding skip connections did improve the model’s understanding of semantic separation.
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Figure 6

Random samples of test set images and their recolorings by the U-Net model. Recolorings appear below

ground truth images.

More model hallucinations appear in Appendix C.

Conclusions and Future Steps

Image colorization is an underconstrained computer vision task. Not enough information exists in

a grayscale image to correctly reproduce its ground truth coloring. However, training a model to

hallucinate perceptually realistic colorings is certainly possible. This task would rely on a very large
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training dataset and require a model with millions of paramters that can capture both low-level and

high-level semantics in the image.

There are many avenues for futher work in this area of research. We’ve already shown that the

U-Net model, originally developed for biomedical image segmentation (Ronneberger et al., 2015) can be

effectively adapted to colorize images as a regression task. A possible improvement is combining our U-Net

colorizer with an image classfier to determine if image class is correlated with hallucination realism.

The classifier concept can also be applied in a different manner. Instead of building a classifier

directly into the colorizer model, the colorizer can be used as an intermediary step in a grayscale image

classification pipeline. Instead of training a classifier on grayscale images, perhaps those images can first be

colorized and then passed through a pre-trained color image classifier, such as an ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) winner.
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Appendix A
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Appendix B

Codebase

All code written for this project is made open-source on GitHub:

https://github.com/pranavavva/image-colorizer. Refer to the README.md file in the repository for

information on how to run the models.

https://github.com/pranavavva/image-colorizer
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Appendix C

Selected U-Net Model Hallucinations

We showcase in Figure C1 further hallucinations from the U-Net model, as this model’s hallucinations are

visually more plausible than that of the autoencoder model. Some of these images may have been included

in user studies, as the studies were generated uniformly at random.
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Figure C1

Further hallucinations from the U-Net model. As in Figure 6, hallucinations appear below their

corresponding ground truth image.
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